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Abstract— With the rapid development of Machine Learning (ML) and Artificial Intelligence (AI) and its diverse use cases, training 

these models has become very difficult and time-consuming, more so because of the huge amount of data required to increase the model's 

accuracy. With the recent development in the field of Quantum Computing, the hope is that it will solve ML problems efficiently. This 

paper gives a brief introduction to quantum computing and one of its use cases – Quantum Machine Learning (QML). It also covers 

some quantum machine learning algorithms like Quantum Support Vector Machine (QSVM), Quantum k-nearest Neighbour (Q-kNN), 

Quantum K Means Clustering and Quantum Neural Networks (QNN), which can be used to solve various types of problems more 

efficiently than classical ML algorithms. Further, it discusses some notable use cases of QML in the field of healthcare like image 

classification and disease detection. Finally, it talks about the challenges and future scope of QML. 

 

Index Terms— Quantum Computing, Quantum Machine Learning, Disease detection. 

 

I. INTRODUCTION 

Quantum computing has been a rapidly evolving field of 

study in recent years. Its increasing popularity in the research 

field is due to some research that shows that quantum 

methods can achieve significant advantages over their 

classical counterparts. Shor's algorithm for integer 

factorization [1] is one such example that shows that quantum 

computing can outperform classical methods and achieve 

exponential speedup. Grover's algorithm for searching in an 

unstructured database [2] is another algorithm that achieves a 

quadratic speedup over the classical search method. 

Researchers at Google achieved quantum supremacy [3] 

when their Sycamore processor with 53 qubits completed a 

task in approx. 200 seconds which classical computers cannot 

complete in a feasible amount of time. 

Machine Learning (ML) and Artificial Intelligence (AI) 

have become one of the most impactful technologies in recent 

years, having use cases in diverse fields of applications like 

healthcare [4][5], finance [6], and transportation. Algorithms 

like support vector machine (SVM) and neural networks have 

applications in highly impactful areas of medical science 

[7][8]. Recent advances and continuous development in the 

field of machine learning ensure that ML has a direct positive 

impact on human lives. 

With the rapid development in the field of machine 

learning, the amount of data is also increasing, making it 

harder for classical computers to process. Quantum 

computing can be used to process huge amounts of data 

efficiently. This has given rise to a new interdisciplinary field 

of quantum machine learning. Quantum Machine Learning 

(QML) is an interdisciplinary field that leverages the 

principles of quantum computing to solve machine learning 

problems. 

QML uses quantum algorithms as part of the process to 

increase efficiency of the overall system by using quantum 

properties such as superposition and entanglement to reduce 

the number of steps required to solve the problem and 

potentially achieve quantum speedup. QML process can 

either be implemented entirely on quantum systems or it can 

also be applied as a hybrid classical-quantum approach which 

uses the best of both worlds and is more likely to be the better 

solution. 

Significant progress has been made in QML methods and 

its implementation. Several machine learning methods like 

Support Vector Machine (SVM), K-Nearest Neighbor, and 

Artificial Neural Network (ANN) are already implemented in 

quantum machines as quantum support vector machine 

(QSVM), quantum kNN, quantum neural networks (QNN) 

respectively. Ensemble machine learning methods are also 

implemented and are providing very good results. Most of the 

QML algorithms are either performing better or similar to 

classical models while also improving training efficiency, as 

you will see in the literature review. 

QML can prove to be most impactful in the field of 

healthcare with various use cases like disease detection and 

prediction, drug analysis and discovery, and medical image 

analysis to make the system better in terms of accuracy and 

efficiency. Several works have already been done by using 

QML algorithms like QSVM, quantum kNN, and QNN. The 

best results have been seen using ensemble learning models 

that use multiple QML algorithms to make the predictions 

better. 

Practical implementation of QML algorithms will require 

data in quantum states. Data obtained from the real world can 

be classical or quantum in nature. If the data is in a quantum 
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state, it can be easily embedded in a qubit. But if the data is 

classical, it is required to encode it into a quantum state with 

the use of data embedding techniques. 

Even though quantum computers can outperform classical 

computers in many cases, they are not here to replace 

classical computers. Classical computers excel in many areas 

of computing, like word processing and handling complex 

tasks where quantum computers are less likely to provide 

speedup. Quantum computers can perform better in areas 

where classical computers struggle [9]. So quantum 

computers will work with classical computers to provide 

better all-round computing needs. 

 

 
Fig. 1. Bloch Sphere representation of the qubit. (a) A qubit can be any point on Bloch sphere. Each distinct point on the Bloch 

sphere represents different state of the qubit. The state of a qubit can be changed by using quantum gates. (b) A Pauli X gate 

rotates the qubit by 90 degrees along X-axis. A qubit with state |0⟩ becomes |1⟩ after applying Pauli-X gate. Similarly, Pauli Y 

and Pauli Z gates rotate the qubit by 90 degrees along Y-axis and Z-axis respectively. (c) The Hadamard gate puts a qubit into 

superposition. If it is applied on |0⟩ it transforms the state of qubit into |+⟩ which means the qubit has an equal probability of 

being in state |0⟩ and |1⟩[10]. 

 

Quantum machine learning has the potential to solve 

problems efficiently, but its practical implementation has 

many challenges. The hardware is not ready yet for general 

computing. The stability of a qubit is one of the challenges 

because it can easily be disturbed by the environment. Apart 

from hardware challenges, noise in the data itself can lead to 

unexpected results. 

Despite the challenges, QML and its applications have 

been witnessing rapid improvements. All these achievements 

in the field of quantum computing and quantum machine 

learning points towards an exciting future in terms of 

processing power. In the following section, we will briefly 

discuss the basics of quantum computing. Next, we will 

discuss quantum machine learning and some important 

research in the field. Next, we will discuss some applications 

of QML in the healthcare domain. Finally, we discuss 

challenges in the field and what we can expect in the future. 

II. BACKGROUND 

A. Qubit 

Like a bit in classical computing, quantum bit or qubit is 

the fundamental unit of quantum computing. It can store 0 

and 1 like a classical bit, represented using bra-ket or Dirac 

notation as |0⟩ and |1⟩. It can also be represented as a column 

vector: 

|0⟩ = (
1
0

) and |1⟩ = (
0
1

) 

The state of a qubit can also be represented geometrically 

using Bloch Sphere as shown in Fig. 1a. 

B. Single Qubit Superposition 

Unlike classical bit, a qubit can also store the combination 

of |0⟩ and |1⟩ called superposition represented as: 

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ 

where 𝜓 represents the superposition state and 𝛼, 𝛽 ∈ C 

and |𝛼|2+|𝛽|2 = 1. 𝛼 and 𝛽 are the complex probability 

amplitudes which means that the total probability of all the 

possible states is equal to 1. 

C. Multiple Qubit Superposition 

Considering a 2-qubit system, there are four possible 

combinations: 00, 01, 10, 11. The combined superposition 

state of the two-qubit system is: 

|𝜓⟩ = 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |10⟩ + 𝛿 |11⟩ 
Here, 𝜓 represents the superposition state of the two-qubit 

system and 𝛼, 𝛽, 𝛾, 𝛿 are complex probability amplitudes and 

|𝛼|2+|𝛽|2+|𝛾|2+|𝛿|2 = 1. 

D. Quantum Measurement 

Even though a qubit can exist in a superposition state, it 

collapses into one of the classical states when measured. 

When a measurement is made, the probability of finding the 

qubit in state |0⟩ is |𝛼|2 and |1⟩ is |𝛽|2. 

E. Quantum Gates 

A quantum gate is an operator that acts on a qubit and 

transforms its state into other states. Quantum gates are the 

building blocks of quantum circuits. It enables various 
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operations, like superposition, entanglement, and parallelism, 

which form the basis of quantum algorithms which act on 

some quantum data and produce results. Unlike classical 

gates, where only some gates are reversible, in quantum 

computing, all gates are reversible. It means that the number 

of inputs and outputs is always the same. Quantum gates are 

represented by unitary matrices. Some of the basic quantum 

gates are: 

1. Pauli X Gate: It performs a bit flip by changing |0⟩ to |1⟩ 
and |1⟩ to |0⟩ (see Fig. 1b). 

𝑋 |0⟩ = |1⟩ 

𝑋 |1⟩ = |0⟩ 

Its matrix representation is: 

𝑋 = [
0 1
1 0

] 

2. Pauli Y Gate: It performs a bit flip and phase flip. It 

turns |0⟩ to 𝑖 |1⟩ and |1⟩ to −𝑖 |0⟩. 
 
 

 
Fig. 2. High-level overview of QML 

 
𝑌 |0⟩ = 𝑖 |1⟩ 

𝑌 |1⟩ = −𝑖 |0⟩  
Its matrix representation is: 

𝑌 = [
0 −𝑖
𝑖 0

] 

3. Pauli Z Gate: It performs a phase flip. It keeps |0⟩ as |0⟩ 
and transforms |1⟩ into − |0⟩: 

𝑍 |0⟩ = |1⟩ 
𝑍 |1⟩ = − |0⟩ Its matrix representation is: 

𝑍 = [
1 0
0 −1

] 

4. Hadamard Gate (H): It is used to put qubit in a 

superposition state. It transforms basis state |0⟩ and |1⟩ into 

|+⟩ and |−⟩ respectively (see Fig. 1c). Here, 

𝐻 |0⟩  =
|0⟩  + |1⟩ 

√2
= |+⟩  

𝐻 |1⟩  =
|0⟩  − |1⟩ 

√2
= |−⟩  

Its matrix representation is: 

𝑥 =
1

√2
[
1 1
1 −1

] 

5. CNOT Gate: CNOT or Controlled-NOT gate is a 

two-qubit gate. It flips the target qubit (second qubit) if the 

control qubit (first qubit) is |1⟩ otherwise the target qubit is 

unchanged. Its matrix representation is: 

𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] 

6. SWAP Gate: The SWAP gate is another two-qubit gate. 

It is used to swap the state of the two qubits. Its matrix 

representation is: 

SWAP = [

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

] 

F. Classical vs Quantum Computing 

While both classical and quantum computing offer a way 

to solve computation problems they differ in several ways. 

Classical computing works on boolean algebra, while 

quantum computing works on linear algebra. The main 

advantage of using quantum computing is its superposition 

property which allows for heavy computational tasks to 

execute easily with the use of quantum parallelism. 

Entanglement is another property that can have its use case in 

improving communication technologies. 

III. QUANTUM MACHINE LEARNING 

A. Classical Data 

The first step is the obvious collection of data. Real-world 

data is generally classical in nature but can also be quantum 

[11]. The data obtained can be noisy or incomplete. We need 

to pre-process the data to keep the relevant fields and filter 

out irrelevant ones. This process is even more important for 

image and audio data. It allows the ML algorithm to process 

effectively and make fewer mistakes. This is done by the 

method of feature selection and extraction. 

Principal Component Analysis (PCA) is one such method 

of feature extraction. Its primary use is for dimensionality 

reduction in numerical data. Apart from this feature selection 

methods are used in order to select relevant features only to 

increase the efficiency of the algorithm. Filter methods are 

used to assign a score to each feature and then rank them and 

choose the top n features. Wrapper methods are used to 

evaluate a subset of features by using it to train the model and 

assign a score. The process is carried out multiple times to 

find out the best subset of features by evaluating the model’s 

accuracy. 

B. Quantum Data Encoding 

Quantum algorithms require data to be in quantum states 
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only hence, classical data needs to be converted into quantum 

data. The process of converting classical data into quantum 

data is called data encoding. There are various methods for 

data encoding. Amplitude encoding is used to encode data 

into amplitudes of quantum states. n number of classical data 

can be encoded into log2(𝑛) which means a small number of 

qubits can hold an exponentially large number of data using 

this method. Basis encoding is another method in which each 

value is represented as a separate quantum state. This 

method requires more number of qubits as compared to 

amplitude encoding, but it can perform certain operations 

more efficiently. 

C.  QML Algorithms 

Quantum algorithms require quantum data to process and 

learn to create a model. QML process makes use of quantum 

algorithms to process information. A quantum algorithm is 

There are various QML algorithms that have been suggested 

and used. Some of them are: 

1) Quantum Support Vector Machine: QSVM is an 

extension of the Support Vector Machine (SVM) algorithm. 

SVM is a supervised machine learning algorithm used for 

classification. The algorithm finds an N-dimensional 

hyperplane that best separates the different categories of data. 

The dimension of the hyperplane depends on the number of 

features. The problem is to find the maximum distance 

between the hyperplane and the nearest data point (called 

support vectors) of two categories (see Fig. 3). Kernel 

functions are used to map the data into high-dimension 

feature space. However, classical SVM struggles with large 

datasets due to the computational cost of the kernel function. 

 
Fig. 3. Illustration of SVM for classification problem. 

Two-feature data is separated by a one-dimensional 

hyperplane (line). 

QSVM replaces the classical kernel with a quantum kernel 

which helps it to process more complex relationships 

between data points. Rebentrost et al. [12] proposed a method 

in which they re-express the SVM as an approximate 

least-squares problem. Then they also used the HHL 

algorithm [13] in the process to solve the linear equations. 

This approach provides exponential speedup over classical 

SVM. There is another approach [14] which provides 

quadratic speedup.  

2) Quantum k-Nearest Neighbor: K-nearest neighbour 

(kNN) is a simple supervised machine learning algorithm 

used for classification tasks. The algorithm works by taking 

the new data and finding the ’k’ nearest neighbour and 

assigning a class based on majority voting (see Fig. 4). 

Selecting the right value of k is very crucial. If the noise in the 

dataset is high then a higher value of k is better otherwise the 

noise can influence the result. The algorithm has three steps. 

The first step is to calculate the distance between the new data 

point and all other data points in the dataset. Euclidean 

distance is the most popular way to calculate the distance, but 

other methods like Manhattan distance, Minkowski distance 

and Hamming distance can also be used depending on the use 

case. The second step is to find k data points with the least 

distance. Finally, the new data is classified based on the most 

common class among the k nearest neighbour. 

This classical ML algorithm can be made better by using 

quantum algorithms like the Swap test to calculate the 

distance between quantum states. A swap test is an algorithm 

used to determine the similarity between two quantum states. 

The fidelity test is another algorithm that can be used to 

determine the similarity between two quantum states. After 

distance measurement, a quantum search method such as 

Grover’s algorithm can be used to find the ’k’ smallest 

distance. 

 
Fig. 4. Illustration of kNN for classification problem. New 

data point (X) is classified as class C because the majority of 

its ’k’ nearest neighbours belong to class C. 

3) Quantum K means clustering: K-means clustering is a 

popular unsupervised machine learning algorithm used for 

dividing data into different clusters. One requirement of this 

algorithm is that the number of clusters is pre-defined and 

denoted by the value K. The algorithm divides data in such 
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way that the data points in the same cluster have similar 

features. The similarity can be measured by Euclidean 

distance. The whole algorithm works by repeating two steps 

again and again. Initially, the centroids are randomly or 

strategically determined. In the first step, each data point is 

assigned to the nearest centroid. In the second step, the 

centroid is recalculated as the mean of all the data points in 

the cluster. The process is repeated till the change in the 

centroid is no longer significant (as shown in Fig. 5). 

One significant area of improvement lies in the calculation 

of distances, which is often the most computationally 

intensive step in K-means. QKmeans employs quantum 

circuits to represent the distance measured between data 

points and centroids. These circuits utilize techniques like 

Quantum Amplitude Encoding (QAE) or the swap test, 

enabling quicker distance calculations for high-dimensional 

data due to the parallelism inherent in quantum computations. 

This parallelism allows QKmeans to explore multiple 

possibilities simultaneously, in contrast to the classical 

approach of sequentially comparing each data point against 

each centroid. 

4) Quantum Neural Networks: Quantum neural networks 

(QNNs) merge the principles of quantum mechanics with the 

capabilities of machine learning algorithms. Unlike 

conventional neural networks that are restricted to binary bits 

(0 or 1), QNNs employ qubits that can exist in a superposition 

state, representing both 0 and 1 simultaneously. By utilizing 

entanglement, which connects qubits, QNNs can 

simultaneously explore multiple possibilities. This 

simultaneous processing has the potential to surpass classical 

networks, especially when dealing with complex problems 

involving intricate data relationships. 

The variational quantum circuit (VQC) is a popular type of 

QNN that involves optimizing parametrized quantum circuits 

using classical optimization techniques to minimize a cost 

function. This method holds great potential in tasks where 

quantum systems excel, such as simulating quantum physical 

processes or solving quantum chemistry problems. Another 

variation is the Quantum Convolutional Neural Network 

(QCNN), which applies the principles of convolutional 

neural networks, commonly used for image and video 

analysis, to quantum data. This adaptation offers the 

possibility of efficiently processing quantum information. 

Similarly, Quantum Recurrent Neural Networks (QRNNs) 

build upon the capabilities of classical recurrent neural 

networks to handle quantum data, potentially improving the 

analysis of sequential quantum information, such as time 

series data obtained from quantum sensors. 

 
Fig. 5. Illustration of K Means clustering. 

 

IV. QUANTUM MACHINE LEARNING IN 

HEALTHCARE 

Research by Dang et al. [15] proposes a quantum kNN 

algorithm for image classification that uses quantum 

parallelism to optimize the efficiency of the algorithm. They 

retrieved the feature vectors of all the photos using a classical 

computer, which consisted of colour and texture features, and 

then sent them to a quantum computer. To describe the 

similarity between the training and test dataset, they 

measured the distance between them by using a quantum 

circuit, which measured the distances in parallel and stored it 

in the amplitude by applying an amplitude estimation 

algorithm. The minimal distances are determined using 

Durr’s algorithm [16]. The indices of the k most comparable 

photos are calculated using measurement, and the final 

classification result is generated using majority vote. Its 

complexity is 𝑂 ( √𝑘𝑀 ), which is better than classical 

algorithms. The classification accuracy is 83.1% on the 

Graz-01 dataset and 78% on the Caltech-101 dataset, 

comparable to classical models. 

Swarna et al. [17] proposed a model to predict Parkinson’s 

disease using adaptive quantum computing. The model uses 

several machine learning techniques like Na¨ıve Bayes, kNN, 

kNN with PCA, Decision trees and Artificial Neural 

Networks. It utilizes ensemble learning models to increase 

prediction accuracy. They carried out the whole process in 

two phases. In phase one, they took the dataset and 

implemented the PCA for feature extraction and selection 

and then used the models to train and test the data to get the 
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model’s accuracy. In phase two, they used quantum 

computing to implement the activation function, hidden 

layers and adaptive algorithms. Then the accuracy is 

measured again. They achieved 82% accuracy in predicting 

Parkinson’s disease using a quantum neural network. The 

accuracy of the model with MLP (Multilayer Perceptron) is 

92% and with kNN it is 82%. The model can be improved 

with a more accurate feature extraction method. 

Research by Abdulsalam et al. [18] applies classical 

algorithms like SVM and ANN and quantum algorithms like 

QNN, quantum support vector classifier (QSVC) and 

Variational Quantum Qualifier (VQC) and compared their 

performance. The research is carried out in four separate 

phases. The first phase deals with the pre-processing of the 

Cleveland dataset using Recursive Feature Elimination (RFE) 

for feature selection and PCA for feature extraction. In the 

second phase, classical classifiers like the Support Vector 

Classifier (SVC) and Artificial Neural Network (ANN) are 

compared to quantum classifiers. In the third phase, three 

quantum classifiers QSVC, QNN and VQC are used. Finally, 

in the fourth phase, the bagging ensemble learning model 

based on Bagging-QSVC is designed and implemented. The 

results verify that heart failure detection rate is better by 

quantum-enhanced machine learning algorithms like QSVC 

(88.52% accuracy), QNN (86.84%), VQC (86.89%), 

Bagging-QSVC (90.16% accuracy) as compared to classical 

algorithms like SVM (85.24%) and ANN (85.24%). The 

proposed ensemble learning model also performs better than 

other models based on quantum random forest, stacking 

ensemble learning and majority voting. 

Research by Maheshwari et al. [19] proposes two 

quantum-based models for the classification of 

cardiovascular disease: optimized quantum support vector 

machine (OQSVM) and hybrid quantum multi-layer 

perceptron (HQMLP). Both models achieved high accuracy 

in predicting cardiovascular disease with OQSVM achieving 

94% accuracy, and HQMLP achieving 93% accuracy. Both 

models are computationally efficient and can be used for 

real-time applications. 

Another research by [20] talks about QNN being the best 

way to solve the problem of identification of diseases. They 

use quantum computing and machine learning models to 

make a neural network architecture for the identification of 

diseases. The proposed architecture is divided into two types. 

The first approach is with quantum data with neural networks 

which are used for identification of disease. In the second 

approach, hybrid quantum implementation is used to find 

correlations between disease symptoms and its treatment. 

The quantum approach proved to be more accurate and can 

be used for medical image processing. 

Shahwar et al. [21] published a study where they used a 

hybrid classical-quantum approach to detect Alzheimer’s. A 

total of 6400 scanned MRI images of size 176 × 208 were 

used in the process. Hybrid classical-quantum transfer 

learning is used to pre-process complex and 

high-dimensional data. They used ResNet34 for feature 

extraction which is a pre-trained model based on a 

convolutional neural network that has 34 layers. Classical 

neural networks are used to extract high-dimensional features 

into quantum processors. They achieved 99% training 

accuracy and 97.2% accuracy on the quantum transfer 

learning model when using a balanced dataset, while on an 

unbalanced dataset, they achieved training accuracy of 99% 

and test accuracy of 93%. The experiment showed that hybrid 

classical-quantum neural networks perform better than 

classical methods and can be beneficial for the health 

industry. The model can be improved by hyper-tuning the 

batch size and quantum depth of variational circuits making it 

a viable choice for real-time use cases. 

In Kavitha and Kaulgud [22], researchers compared the 

quantum K-means clustering approach to classical K-means 

clustering for diagnosing cardiac illnesses. The main goal 

was to design a quantum circuit capable of calculating the 

distance required by the clustering process while potentially 

outperforming classical methods. The first step of the 

methodology includes preprocessing of data using PCA to 

check for null values. The following step is to normalize the 

data and convert classical data to quantum data using various 

data preparation methods. The quantum K-means clustering 

approach is applied in three steps: 1) Distance computation 

with a Swap test circuit, 2) Cluster update, and 3) Centroid 

update. The result concluded that quantum K-means 

clustering has better accuracy than its classical counterpart. 

The classical method has an accuracy of 93% after 

normalization and 94% after outlier rejection while the 

quantum method has an accuracy of 95% after normalization 

and 96.4% after outlier rejection. The preprocessing time was 

also better with the quantum approach. 

Elsedimy et al. [23] suggested a heart disease detection 

model based on a quantum-behaved particle swarm 

optimization (QPSO) algorithm and an SVM model called 

QPSO-SVM. The proposed model consists of a total of three 

phases. The initial stage was to preprocess the data, which 

involved converting nominal data to numerical data and then 

scaling it using the min-max approach after replacing missing 

values with random uniform noise. The second phase is to 

implement the QPSO-SVM algorithm which has three stages. 

Then the improved QPSO-SVM model was used for the 

classification tasks on the dataset, and results were noted and 

compared with another state of the models. The result 

showed that it has the best accuracy of 96.31% for heart 

disease prediction. It also outperformed other models in 

terms of sensitivity (96.13%), specificity (93.56%), precision 

(94.23%), and F1 score (0.95%). 

Jain et al. [24] conducted studies to classify two subtypes 

of non-small cell lung cancer. The data set comprises of 

approximately 20,000 gene expression levels from 104 

patients. They employed a combination of conventional and 

quantum ML models to classify the cases. They used feature 

selection to decrease the amount of variables due to QPU’s 
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hardware constraints, as well as to reduce noise and train the 

model with only the most significant variables. Furthermore, 

they performed machine learning by quantum Boltzmann 

machine. The result showed the proposed model has a raw 

score of 95.24%. They also discovered that a larger sample 

size and number of concealed nodes resulted in higher 

prediction accuracy. 

In Alsharabi et al. [25], researchers proposed an 

AlexNet-quantum transfer learning technique for diagnosing 

neurodegenerative illnesses by combining quantum 

computers and deep neural networks. They employed a 

pre-trained AlexNet model to extract informative feature 

vectors from high-dimensional data. They then integrate this 

network into QVC. This model collects 4096 characteristics 

from the MRI dataset and feeds these vectors into the 

quantum circuit. The QVC generates a 4-dimensional vector, 

which is reduced to a 2-dimensional vector. The results 

indicated a classification accuracy of 97% for Parkinson’s 

disease and 96% for Alzheimer’s disease. 

V. CONCLUSION 

The future of quantum machine learning (QML) holds 

significant promise, given the rapid pace of development. 

Overall, while quantum machine learning is still an emerging 

field, it has the potential to revolutionize how we approach 

computational tasks, particularly in areas where classical 

methods struggle to provide satisfactory solutions. As 

research progresses and quantum technology matures, we can 

expect to see increasingly sophisticated applications of 

quantum machine learning across various domains. Some 

potential directions and opportunities for QML are: 

Quantum computers possess the capability to significantly 

surpass classical computers in specific tasks by leveraging 

parallel computation and utilizing quantum phenomena such 

as superposition and entanglement. This has the potential to 

result in notable enhancements in the efficiency of machine 

learning algorithms, particularly in areas like optimization, 

matrix inversion, and extensive data analysis. 

The potential of quantum computing lies in its ability to 

enable the development of new and innovative 

machine-learning algorithms and models that utilize the 

principles of quantum mechanics. These algorithms can 

efficiently solve complex problems or address challenges that 

traditional methods find difficult. Some notable examples 

include quantum versions of support vector machines, 

clustering algorithms, and neural networks. 

Quantum machine learning methods have the potential to 

enhance the precision and effectiveness of analyzing 

extensive datasets, especially in disciplines where traditional 

machine learning methods encounter constraints. This 

advancement may find utility in various sectors including 

pharmaceutical research, material science, financial analysis, 

and streamlining operations in logistics and supply chain 

management. 

 

Quantum computers have the potential to directly handle 

quantum data, enabling the examination and control of 

quantum states. This paves the way for specialized quantum 

data analysis methods that cater to quantum datasets, playing 

a crucial role in quantum information processing, quantum 

communication, and quantum sensing. 

One of the major obstacles in the adoption of quantum 

machine learning is the need to enhance the coherence and 

reduce error rates of quantum hardware. Quantum systems 

are highly sensitive to external disturbances and noise, which 

can lead to errors in computations. To overcome this, 

researchers are actively working on developing error 

correction codes and error mitigation techniques that can 

improve the reliability and stability of quantum hardware. 

Another challenge lies in formulating efficient quantum 

algorithms that are specifically tailored to machine learning 

tasks. Traditional machine learning algorithms are designed 

for classical computers and may not be directly applicable to 

quantum systems. Therefore, there is a need to develop new 

algorithms that can take advantage of the unique properties of 

quantum computing, such as superposition and entanglement, 

to solve machine learning problems more efficiently. 
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